SEX-LINKED INHERITANCE

- This is a form of inheritance where the gene/allele for the characteristic being studied is on the ___________ chromosome.
- Diseases such as colour-blindness and haemophilia are inherited this way, and are more common in ___________ than females.

HAEMOPHILIA

- **Alleles, Genotypes and Phenotypes for Haemophilia (Blood-Clotting Inability)**

 \(X_H \) – allele for normal blood clotting
 \(X_h \) – allele for haemophilia

 \(X_HX_H \) – genotype of normal female
 \(X_hX_h \) – genotype of haemophiliac female
 \(X_HX_h \) – genotype of carrier female (with normal blood-clotting ability, but who can pass the ___________ gene to her children)

 \(X_HY \) – genotype of normal male
 \(X_hY \) – genotype of haemophiliac male

- **Example 1 – Haemophilia**
 A man with normal blood-clotting ability \((X_HY) \) marries a woman who is a haemophiliac \((X_hX_h) \). The possible phenotypes of their children are ...

<table>
<thead>
<tr>
<th></th>
<th>(X_H)</th>
<th>(Y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(X_h)</td>
<td>(X_HX_h)</td>
<td>(X_hY)</td>
</tr>
<tr>
<td>(X_h)</td>
<td>(X_hX_h)</td>
<td>(X_hY)</td>
</tr>
</tbody>
</table>

 Possible genotypes = 1 \(X_HX_h \) : 1 \(X_hY \)
 Possible phenotypes
 = 1 ___________ female : 1 _________________ male

- **Example 2 – Haemophilia**
 A normal woman \((X_HX_H) \) marries a haemophiliac man \((X_hY) \). The possible genotypes and phenotypes of the children are...

<table>
<thead>
<tr>
<th></th>
<th>(X_H)</th>
<th>(X_h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(X_h)</td>
<td>(X_HX_h)</td>
<td>(X_hX_h)</td>
</tr>
<tr>
<td>(Y)</td>
<td>(X_HY)</td>
<td>(X_hY)</td>
</tr>
</tbody>
</table>

 Possible genotypes = 1 \(X_HX_h \) : 1\(X_HY \)
 Possible phenotypes
 = 1 ___________ female : 1 _________________ male

xceleratescience.com
RED-GREEN COLOUR BLINDNESS

- **Alleles, Genotypes and Phenotypes for Colour-blindness**

 Xc - allele for normal colour vision
 Xc - allele for colour-blindness

 Xc Xc - genotype of normal female
 Xc Xc - genotype of colourblind female
 Xc Xc - genotype of carrier female (with normal colour vision, but who can pass the defective gene to her children)
 Xc Y - genotype of normal male
 Xc Y - genotype of colourblind male

- **Example 3 – Colour Blindness**

 A male with normal vision (XcY) and a colourblind female (Xc Xc) have children. The possible genotypes and phenotypes of the children are ...

<table>
<thead>
<tr>
<th></th>
<th>Xc</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xc</td>
<td>XcXc</td>
<td>XcY</td>
</tr>
<tr>
<td>Xc</td>
<td>XcXc</td>
<td>XcY</td>
</tr>
</tbody>
</table>

 Possible genotypes =
 Possible phenotypes =

- **Example 4 – Colour Blindness**

 A carrier female (Xc Xc) marries a normal-visioned male (Xc Y). The possible genotypes and phenotypes of the children are...

<table>
<thead>
<tr>
<th></th>
<th>Xc</th>
<th>Xc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xc</td>
<td>XcXc</td>
<td>XcXc</td>
</tr>
<tr>
<td>Y</td>
<td>XcY</td>
<td>XcY</td>
</tr>
</tbody>
</table>

 Possible genotypes =
 Possible phenotypes =

xceleratescience.com